Бесплатные Системы машинного обучения (СМО)
Программные сервисы и Системы машинного обучения (СМО, англ. Machine learning, ML) — это комплекс инструментов и технологий, предназначенных для анализа данных, выявления закономерностей и построения моделей, которые позволяют компьютерам обучаться на основе опыта и делать прогнозы или принимать решения без явного программирования. Эти системы используют алгоритмы и статистические модели для обработки больших объёмов данных, извлечения из них значимой информации и адаптации к новым данным, что позволяет автоматизировать процессы принятия решений и повысить их точность в различных областях, таких как финансы, медицина, маркетинг и многих других.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для включения в категорию Систем машинного обучения данное программное обеспечение должно удовлетворять следующим критериям:
- Наличие у системы возможностей учиться и адаптироваться на основе данных;
- Использование входных данных из различных источников;
- Предоставление результатов, решающих проблему бизнеса на основе изученных данных;
- Обеспечение интеллектуальных возможностей обучения для прикладных программных приложений.
Сравнение Бесплатные Системы машинного обучения (СМО)
Категории
Системы машинного обучения (ML)
Сортировать:
Систем: 5

Plotly Dash от Plotly
Plotly Dash — это аналитический программный фреймворк Python для быстрого создания информационных панелей (дашбордов) для веб-браузера с использованием технологий ИАД, МО и ИИ.
Plotly DashPlotly

Plotly Dash — это аналитический программный фреймворк Python для быстрого создания информационных панелей (дашбордов) для веб-браузера с использованием технологий ИАД, МО и ИИ.

Qlik Sense от Qlik
Qlik Sense — это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных.
Qlik SenseQlik

Qlik Sense — это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных.

KNIME Analytics Platform от KNIME
KNIME Analytics Platform — это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом.
KNIME Analytics Platform — это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом.

Anaconda от Anaconda
Anaconda — это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, принимающих решения.
AnacondaAnaconda

Anaconda — это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, принимающих решения.

Deductor от Аналитические технологии
Deductor — это программная платформа продвинутой аналитики, позволявшая создавать законченные прикладные аналитические решения для бизнеса. Продукт снят с продажи.
DeductorАналитические технологии

Deductor — это программная платформа продвинутой аналитики, позволявшая создавать законченные прикладные аналитические решения для бизнеса. Продукт снят с продажи.
Руководство по покупке Бесплатные Системы машинного обучения (СМО)
- Что такое - definition
Программные сервисы и Системы машинного обучения (СМО, англ. Machine learning, ML) — это комплекс инструментов и технологий, предназначенных для анализа данных, выявления закономерностей и построения моделей, которые позволяют компьютерам обучаться на основе опыта и делать прогнозы или принимать решения без явного программирования. Эти системы используют алгоритмы и статистические модели для обработки больших объёмов данных, извлечения из них значимой информации и адаптации к новым данным, что позволяет автоматизировать процессы принятия решений и повысить их точность в различных областях, таких как финансы, медицина, маркетинг и многих других.
- Зачем бизнесу - business_task_rus
Машинное обучение (МО) - это тип алгоритма или метода программирования, который позволяет программным системам и бизнес-приложениям стать более эффективными и точными в прогнозировании результатов.
Как следует из определения, программные решения с возможностями машинного обучения запрограммированы на изучение поведения пользователей и их шаблонных действий для проведения расчётной оценки потенциальных результатов на основе собранных данных.
Ключевым принципом МО является создание алгоритмов, способных получать и анализировать входные данные путем статистического анализа. Анализ производится с дальнейшей целью прогнозирования результатов. При этом, в последующем в ходе прогнозирования обучение продолжается на основе новых рабочих данных.
Основные процессы, связанные с машинным обучением, напрямую связаны с процессами искусственного интеллекта (ИИ, AI) и интеллектуального анализа данных (ИАД). Эти процессы включают в себя просеивание данных для поиска закономерностей и в то же время адаптацию программных действий к новой доступной информации.
Машинное обучение стало довольно распространенным в современной цифровой среде, хотя большинство пользователи Интернета пока не осознают это. Люди, которые часто делают покупки в Интернете или заходят в социальные сети, регулярно сталкиваются с результатами работы алгоритмов машинного обучения. Каждое объявление или предложение / рекомендация, с которыми они сталкиваются, является продуктом алгоритмов МО.
- Назначение и цели использования - purpose
Системы машинного обучения (СМО) представляют собой прикладные приложения, где алгоритмы обучения используются в системе для обеспечения автоматизированного выполнения интеллектуальных бизнес- или производственных задач. Система или сервис подключается к источникам данных, чтобы обеспечить в течение времени научение и адаптацию алгоритма системы, создавая полезный результат.
Среди систем машинного обучения выделяют обособленный класс систем - Системы глубокого обучения (англ. Deep learning systems). Используемые в данных программных продуктах алгоритмы глубокого обучения позволяют оперировать более высокоуровневыми понятиями, в связи с чем эти системы позволяют добиваться лучших результатах в сложных задачах: оптическое распознавание символов, обработка естественного языка, аудиораспознавание, распознавание сложных событий, биоинформатика, распознавание речи.
Автоматическое (или автоматизированное) принятие решений в программном обеспечении для машинного обучения производится благодаря статистической обработке данных. Данные обрабатываются с использованием искусственных нейронных сетей (ИНС) или иных алгоритмов обучения. Существует множество различных типов алгоритмов машинного обучения, которые обладают различными преимуществами и недостатками: обучение ассоциативным правилам, байесовские сети, кластеризация, обучение деревьев решений, генетические алгоритмы, обучение классификаторов, метод опорных векторов и пр.
- Основные пользователи - users
Системы машинного обучения в основном используют следующие группы пользователей:
- финансовые учреждения и компании, занимающиеся инвестициями, для прогнозирования трендов на рынках, оценки рисков и выявления мошеннических операций;
- медицинские организации и исследовательские центры для анализа медицинских данных, диагностики заболеваний, разработки персонализированных методов лечения и прогнозирования эпидемий;
- розничные и онлайн-магазины, а также компании в сфере e-commerce для анализа поведения потребителей, персонализации предложений, оптимизации запасов и прогнозирования спроса;
- производственные предприятия для оптимизации производственных процессов, прогнозирования отказов оборудования, контроля качества продукции и минимизации отходов;
- компании в сфере маркетинга и рекламы для сегментации аудитории, таргетирования рекламных кампаний, анализа эффективности маркетинговых мероприятий и прогнозирования реакции потребителей;
- транспортные и логистические компании для оптимизации маршрутов, прогнозирования загруженности транспортных узлов, управления складскими запасами и улучшения доставки товаров;
- научно-исследовательские организации и университеты для анализа больших объёмов данных в различных областях знаний, моделирования сложных процессов и выявления новых закономерностей.
- Обзор основных функций и возможностей - functionsВозможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
- Рекомендации по выбору - choose_recommendation
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса Системы машинного обучения (СМО) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций могут потребоваться масштабируемые решения с высокой производительностью и возможностью обработки больших объёмов данных, тогда как для малого и среднего бизнеса подойдут более простые и доступные по стоимости системы. Также важно учитывать отраслевые требования и специфику бизнеса — например, в финансовом секторе могут быть необходимы системы с высокой точностью прогнозирования и соответствием регуляторным нормам, в медицине — системы, способные работать с конфиденциальными данными и соответствующие стандартам защиты информации, в маркетинге — инструменты для анализа поведения потребителей и сегментации аудитории. Не менее значимы технические ограничения, включая совместимость с существующей ИТ-инфраструктурой, требования к аппаратным ресурсам (например, объём оперативной памяти, ёмкость хранилищ данных, вычислительная мощность процессоров), а также наличие необходимых интерфейсов для интеграции с другими системами. Кроме того, стоит обратить внимание на функциональность системы: наличие предобученных моделей, возможность обучения моделей на специфических данных компании, инструменты для визуализации результатов анализа, механизмы мониторинга и оценки качества моделей.
Ключевые аспекты при принятии решения:
- соответствие функциональности системы поставленным бизнес-задачам (прогнозирование, классификация, кластеризация и т. д.);
- возможность масштабирования системы в соответствии с ростом объёмов данных и бизнес-процессов;
- наличие механизмов обеспечения безопасности и конфиденциальности данных (шифрование, аутентификация, контроль доступа);
- совместимость с существующей ИТ-инфраструктурой и корпоративными системами (ERP, CRM и др.);
- поддержка необходимых форматов данных и возможность интеграции с источниками данных (базами данных, API, облачными хранилищами);
- наличие инструментов для предварительной обработки и очистки данных, которые необходимы для повышения качества обучения моделей;
- возможности для мониторинга работы моделей, оценки их точности и корректировки в процессе эксплуатации;
- наличие документации, обучающих материалов и поддержки со стороны разработчика системы;
- соответствие отраслевым стандартам и нормативным требованиям (например, требованиям к защите персональных данных, финансовым нормативам и т. п.).
Выбор системы машинного обучения должен быть обоснован не только текущими потребностями бизнеса, но и перспективами его развития. Необходимо учитывать не только начальные затраты на внедрение системы, но и последующие расходы на её обслуживание, обновление, обучение персонала. Также важно оценить уровень поддержки и развития продукта со стороны разработчика, наличие сообщества пользователей и возможность получения консультаций и решений по возникающим проблемам.
- Выгоды, преимущества и польза от применения - benefit
Важность машинного обучения и его преимущества можно поставить в один ряд с преимуществами систем искусственного интеллекта (ИИ) и интеллектуального анализа данных (ИАД). Занимаясь бизнесом, вы имеете дело с растущими объемами данных и разнообразием информации. В условиях информационного избытка важно иметь надёжные и эффективные инструменты, позволяющие вам быстро просеять информацию, найти наиболее релевантные данные, использовать данные для улучшения вашего бизнеса.
Технология машинного обучения помогает малым бизнесам, предприятиям, организациям и отдельным пользователям (фрилансерам, индивидуальным предпринимателям, аналитикам, исследователям) трансформировать процессы. Применение Систем машинного обучения позволяет сделать бизнес-процессы более упорядоченными, эффективными и удобными. Пользователи могут найти подходящие данные быстрее и проще.
- Отличительные черты - distinctive_features
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для включения в категорию Систем машинного обучения данное программное обеспечение должно удовлетворять следующим критериям:
- Наличие у системы возможностей учиться и адаптироваться на основе данных;
- Использование входных данных из различных источников;
- Предоставление результатов, решающих проблему бизнеса на основе изученных данных;
- Обеспечение интеллектуальных возможностей обучения для прикладных программных приложений.
- Тенденции в области - trends
По аналитическим данным Соваре, в 2025 году на рынке систем машинного обучения (СМО) можно ожидать усиления тенденций к интеграции мультимодальных данных, развития методов объяснимого ИИ, повышения эффективности работы с большими данными, дальнейшего внедрения методов автоматического машинного обучения (AutoML), расширения применения методов обучения с подкреплением, усиления акцента на безопасность и конфиденциальность данных, а также более тесной интеграции СМО с другими ИТ-системами.
- Мультимодальные данные. Системы машинного обучения будут всё активнее обрабатывать и анализировать данные различных типов (текст, изображения, аудио), что позволит создавать более комплексные и точные модели для решения сложных задач.
- Объяснимый ИИ. Развитие методов, позволяющих понять логику принятия решений моделями машинного обучения, станет ключевым направлением, особенно в таких сферах, как медицина и финансы, где требуется высокая прозрачность алгоритмов.
- Работа с большими данными. Оптимизация алгоритмов для обработки колоссальных объёмов данных с минимальными задержками и ресурсами останется приоритетной задачей, что потребует разработки новых подходов к распределённым вычислениям и хранению данных.
- Автоматическое машинное обучение (AutoML). Упрощение процесса создания моделей машинного обучения для пользователей без глубоких знаний в области Data Science будет способствовать более широкому распространению СМО в различных отраслях.
- Обучение с подкреплением. Расширение применения методов обучения с подкреплением в задачах, связанных с принятием последовательных решений, например в робототехнике и управлении сложными технологическими процессами.
- Безопасность и конфиденциальность. Усиление требований к защите данных и разработка механизмов обеспечения конфиденциальности при обучении моделей станут неотъемлемой частью разработки СМО, особенно в свете растущего числа киберугроз.
- Интеграция с ИТ-системами. Более тесная интеграция СМО с корпоративными информационными системами, ERP, CRM и другими платформами позволит повысить эффективность бизнес-процессов и улучшить качество принимаемых решений на основе данных.
- В каких странах разрабатываются - countries
